$\mathfrak T$ ideo Inpainting by Jointly Learning Temporal Structure and Spatial Details

chuan Wang¹ wangchuan@megvii.com Haibin Huang¹ huanghaibin@megvii.com Xiaoguang Han^{‡2} hanxiaoguang@cuhk.edu.cn Jue Wang¹

¹ Megvii (Face++), Redmond, WA, USA

²Shenzhen Research Inst. of Big Data. The Chinese University of Hong Kong (Shenzhen), Shenzhen, China

Abstract

Wangjue@megvii.com

We present a n
of video frames. A
networks: a tempor
The temporal stru
tecture: It only le
computational cos
ance to the spatia
with a 2D fully co
inal resolution. S
frame and the ten
networks in an en
on three datasets,
video inpainting r We present a new data-driven video inpainting method for recovering missing regions of video frames. A novel deep learning architecture is proposed which contains two subnetworks: a temporal structure inference network and a spatial detail recovering network. The temporal structure inference network is built upon a 3D fully convolutional architecture: It only learns to complete a low-resolution video volume given the expensive computational cost of 3D convolution. The low resolution result provides temporal guidance to the spatial detail recovering network, which performs image-based inpainting with a 2D fully convolutional network to produce recovered video frames in their original resolution. Such two-step network design ensures both the spatial quality of each frame and the temporal coherence across frames. Our method jointly trains both subnetworks in an end-to-end manner. We provide qualitative and quantitative evaluation on three datasets, demonstrating that our method outperforms previous learning-based video inpainting methods.

Introduction 1

Given an image or a video with holes inside (e.g. generated by object removal), inpainting (also called completion) techniques try to recover the missing video content to produce a nature looking result. This problem has drawn great attention in the past two decades due to strong industrial demands in image and video editing applications. Inpainting is a very challenging task as the requirements are two-fold: (1) the generated content in the missing regions must be semantically correct given their surrounding content; and (2) the missing regions need to be filled in a seamless way that the original holes are visually unnoticeable.

In this work, we focus on video inpainting, an extended problem from image inpainting with the added temporal dimension. Such extension brings new technical challenges that are difficult to resolve. First, recovering missing video content requires the understanding of not only the spatial context of each frame, but also the motion context across frames. Second,

[‡]Corresponding Author.

^{© 2018.} The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.

Figure 1: Video inpainting results by our approach. Top: input frames with missing regions (shown in gray). Bottom: our results. Note that the filled regions contain rich image details and are temporally coherent.

the output video must maintain high spatio-temporal consistency, in both global context-level and local image-feature-level. Although there has been tremendous progress on image inpainting, e.g. patch-based image synthesis [1], 2] and deep learning based approaches [12], a direct extension of those methods in 3D would not work well for video inpainting. Specifically, [12], [23], [24], [25], [26] have tried to extend spatial 2D patch synthesis to spatial-temporal 3D patch synthesis. However, local synthesis, even in 3D space, cannot guarantee global semantic correctness. Moreover, directly applying image inpainting networks on each frame individually often leads to temporally jittering results that are visually unacceptable, as we will demonstrate later.

We present a novel end-to-end deep learning architecture to tackle the above issues for high quality video inpainting. As shown in Fig. 2, The network consists of a temporal structure prediction sub-network and a spatial detail recovering sub-network. The former sub-network treats a video as a 3D volume. It takes a down-sampled version of the original video as input, and fill the holes in it using 3D CNN with an Encoder-Decoder architecture. We use this output volume as temporal structure guidance, since it captures the motion structure across time but lacks spatial details. The spatial detail inference network then takes the original video and the temporal structure guidance as input, and generates completed video frames in their original resolution. It has a 2D Encoder-Decoder architecture with global and local l_1 consistency losses. These two sub-networks are jointly trained and can benefit from each other. In other words, the temporal structure guidance improves both the temporal smoothness and the context consistency of the final video. Meanwhile, the loss of the spatial detail recovering network is also back-propagated into the first network and helps improve the accuracy of temporal structure prediction.

In summary, our main contributions are:

- the first work to use deep neural networks for solving the problem of video completion.
 Compared with existing methods, the proposed algorithm can deal with the video with complex appearances and large missing regions;
- we design a novel deep learning architecture that uses 3D CNN for temporal structure prediction and 2D CNN for spatial detail recovering, where the output temporal structure is fused into the 2D CNN to guide the detail inference;
- we perform joint training of the two sub-networks, which further improves the performance of the overall system.

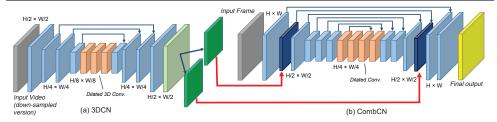


Figure 2: Network architecture of our 3D completion network (3DCN) and 3D-2D combined completion network (CombCN). The 3DCN works in low resolution, producing an inpainted video as output. Its individual frames are further convolved and added into the first and last layer of the same size in CombCN.

2 Related Work

In this section, we introduce the related works in the following three aspects and refer the readers to the works of [4] and [45] for detailed literature review of image/video inpainting.

Patch-based Image/Video Inpainting To fill in the holes using patch-based synthesis is the most used traditional strategy for image inpainting. This was firstly proposed in [1] and [1], where the missing contents are recovered in a region-growing way: the method starts from boundary of holes and extends the region by searching appropriate patches and assembling them together. Following up this work, there are many different directions for improvement in searching and optimization [1], [2], [3], [3]. It is also adapted to video inpainting problem by replacing 2D patch synthesis with 3D spatial-temporal patch synthesis across frames. This was firstly proposed in [13], [3] to ensure the temporal consistency of the generated video and later improved in [13], [3] to handle more complicated video input. However, all of these works are designed for the video owning of repeated content across frames. They are unable to tackle the problem we proposed in this paper where no any similar contents of the missing parts can be found in the input. Resorting to a large video dataset, we try to train a CNNs in this work for missing contents prediction based on the high-level context understanding.

Image Completion using 2D CNNs Recently, Convolutional Neural Networks was firstly used in [52] for image inpainting but only for small holes. Pathak et al. [53] then proposed to deal with large missing regions using an encoder-decoder architecture which can efficiently learn the context feature of the image. For high-resolution image inpainting, Yang et al. [53] developed a multi-scale neural patch synthesis algorithm that not only preserves contextual structure but also produces high-frequency details. The algorithm proposed in [53] further improves the performance by involving two adversarial losses to measure both the globally and locally consistency of the result. Different from the previous works which only focus on box-shaped holes, it also develops a strategy to handle the holes with arbitrary shapes. To extend these methods from image to video domain is a challenging task because video completion not only needs to have an accurate context understanding of both frames and motions but also requires to ensure temporal smoothness of the output. In this paper, we propose a novel deep learning architecture for this problem which takes use of both 2D and 3D CNNs to jointly learn the temporal structure and spatial details.

Layer No.	Type	Kernel	Stride	Channel	Dilation	Layer No.	Type	Kernel	Stride	Channel	Dilation
1	conv.	5	1	16	-	7	dilated conv.	3	1	256	8
2	conv. ↓	3	2	32	-	8	conv.	3	1	128	-
3	conv.	3	1	64	-	9	deconv. ↑	4	2	64	-
4	conv. ↓	3	2	128	-	10	conv.	3	1	32	-
5	dilated conv.	3	1	256	2	11	deconv. ↑	4	2	16	-
6	dilated conv.	3	1	256	4	12	conv.	3	1	3	-
Layer No.	Туре	Kernel	Stride	Channel	Dilation	Layer No.	Type	Kernel	Stride	Channel	Dilatio
1	conv.	5	1	64	-	10	dilated conv.	3	1	256	16
2*	conv. ↓	3	2	128	-	11	conv.	3	1	256	-
3	conv.	3	1	128	-	12	conv.	3	1	256	-
4	conv. ↓	3	2	256	-	13	deconv. ↑	4	2	128	-
5	conv.	3	1	256	-	14	conv.	3	1	128	-
6	conv.	3	1	256	-	15*	deconv. ↑	4	2	64	-
7	dilated conv.	3	1	256	2	16	conv.	3	1	32	-
8	dilated conv.	3	1	256	4	17	conv.	3	1	3	-
9	dilated conv.	3	1	256	8						

Table 1: Network architecture of 3DCN (top) and CombCN (bottom). In the bottom table, * represents the layers where combination takes place in CombCN.

Shape Completion using 3D CNNs Another series of works related to our paper is using 3D CNNs for 3D shape completion. Similar to deep learning based image inpainting, most of the methods such as [1, 23, 25] uses encoder-decoder architecture but with 3D CNNs for solving this problem. However, all these techniques can only handle low-resolution grids (typically 30³ voxels) due to the high computational cost of 3D convolutions. To address this issue, many approaches are proposed most recently. Resorting to a dataset, Dai et al. [1] used patch retrieval and assembly as a post-processing to refine the low-resolution output of encoder-decoder network. For such post-refinement, the method in [23] proposed a strategy to slice the low-resolution output into a sequence of images and did super-resolution and completion for each sliced image with a recurrent neural network. Han et al. [III] designed a hybrid networks for jointly global structure prediction and local geometry inference. Our work is inspired by this method but differs from it in two aspects. Firstly, the method of conducted the completion in a region-growing way while ours is an end-to-end architecture for completion. Secondly, for details inference, the method in [III] only looks at a local region which lacks much surrounding context information while ours algorithm uses the content of the whole image for missing information recovering.

3 Algorithm

Our method is built upon deep neural networks. It takes an incomplete video V_{in} and a mask video M as input, and produces an complete video V_{out} as output. The incomplete video is represented as a $F \times H \times W$ volume, where F, H, W are number of frames, height and width of V_{in} . M and V_{out} are of the same size as V_{in} . In training stage, V_{in} is obtained by randomly generating holes on a complete video x, i.e. the target ground truth of the inpainting task.

To produce a spatial-temporal coherent inpainted video, our network consists of two sub-networks. One network is a 3D completion network (3DCN), which utilizes 3D CNN to infer the temporal structure globally from a down-sampled version $(F \times \frac{H}{r} \times \frac{W}{r})$ of V_{in} and M. In this paper, we use superscript d to distinguish the downsampled videos from their original versions. So 3DCN takes V_{in}^d and M^d as input and produces V_{out}^d as output. Another sub-network is a 3D-2D combined completion network (CombCN). It applies 2D CNN to perform completion frame by frame. The input of this network includes two incomplete but high-resolution frames of V_{in} and M and a low-resolution but completed frame $I_{out}^{d,k}$ of V_{out}^d (k=1,2,...,F). In our paper, F, H, W, r are set to 32, 128, 128 and 2 respectively.

3.1 Temporal structure inference by 3DCN

A video inpainting task requires not only filling the missing part within each frame but also keeping the consistency between successive frames. For this reason, it would fail if directly apply the existing image inpainting methods such as [\square] on video frames separately, because they lack the mechanism of preserving temporal coherence. On the other hand, video can also be viewed as a spatial-temporal volume and its temporal structure could be preserved when algorithms are globally applied on it, such as [\square]. To this end, we apply 3D CNN globally to video inpainting. However, due to the expensive memory cost of 3D convolutions, we only utilize 3D CNN on a down-sampled version V_{in}^d of the input video. The 3D completion network can generate an inpainted video V_{out}^d which captures the temporal structure of the original video, even although its individual frame lacks details.

Our 3D completion network follows an encoder-decoder structure and consists of 12 layers totally. Given the incomplete video and its mask as input, it first exploits 4 strided convolutional layers to encode it to a latent space, capturing its temporal-spatial structure. Then 3 dilated convolutional layers with rate 2, 4, 8 are followed to capture the spatial-temporal information in larger perception field. At last, video inpainting is finally achieved by 3 convolutional and 2 fractionally-strided convolutional layers in an alternative order, yielding the result with missing part filled. Rather than using the max-pooling and upsampling layers to compute the feature maps, we employ 3×3 convolution kernels with stride of 2, which ensures that every pixel contributes. Meanwhile, considering non-successive frames may have rare relations with the current one, and to avoid information loss across frames, we limit stride and dilation takes effects only within frame rather than across frames. As a result, the feature map of each layer has a constant frame number F. Besides, all the convolutional layers are followed by batch normalization (BN) and ReLU non-linearity activation except the last one. Paddings are involved to make the input and output have exactly the same size. The skip-connections as U-Net [221] are also employed to facilitate the feature mixture across encoder and decoder. The detailed configuration of our 3D completion network is illustrated in Fig. 2 (a) and listed in Table 3 (left) (BN and ReLU are not shown for brevity).

Training. Let $G_v(x^d, M^d) = V_{out}^d$ denotes the 3DCN in a functional form. The binary masks M^d and M take the value 1 inside regions to be filled-in and 0 elsewhere. The pixels of V_{in}^d and V_{in} inside the mask region are pre-filled with the mean pixel value of the training dataset before feeding it to the network. During training, we minimize the l_1 norm the difference between V_{out}^d and x^d . The difference is also weighted considering the completion region mask is used. Specifically, the l_1 loss of 3DCN is defined by:

$$L^{3DCN}(x^d, M^d) = \frac{\|M^d \odot (G_v(x^d, M^d) - x^d)\|}{\|M^d\|}$$
(1)

where \odot is the pixelwise multiplication and $\|\cdot\|$ is the l_1 norm.

3.2 Spatial details completion by CombCN

The output of 3DCN is a low resolution inpainted video. It conveys temporal structure but lacks details within each frame. To restore the details, we extend a 2D completion network (2DCN) inspired by a state-of-the-art image inpainting work [L3], obtaining a combined completion network (CombCN). This CombCN consists of 17 layers including 11 strided convolutional layers, 2 fractional deconvolutional layers and 4 dilated convolutional layers.

It also follows an encoder-decoder structure where the minimal feature map size is $\frac{H}{4} \times \frac{W}{4}$. The dilated convolutional layers are involved to obtain a larger perception field so that the network can "see" areas far from the missing part. The configuration of CombCN is listed in Table. 3 (right) and we encourage the readers to review [\square 3] for a detailed explanation of its original configuration. Note that we also made a modification by involving skip-connection as U-Net.

To tackle the issue that 2DCN treats each frame independently without considering temporal coherence, we also inject the information from the output of 3DCN to CombCN. This is achieved by using two convolutional layers to extract two feature maps of the 3DCN output separately. The two feature maps are then added to the first and last layer of the same size in CombCN, serving as a temporal guidance. In this paper, since 3DCN works on videos of size $\frac{H}{2} \times \frac{W}{2}$, the combination takes place in the 2nd and the 15th layer. We compared the effectiveness of this combination setting with the basic 2DCN on successive frames. The experimental results illustrate temporal coherence can be well preserved when inpainting frames separately, as shown in Fig. 3 and Fig. 1.

Training. Let $G_i(x^k, M^k, I_{out}^{d,k}) = I_{out}^k$ denotes the CombCN in a functional form, where x^k , M^k and $I_{out}^{d,k}$ are the k-th frame of the target ground truth video x, mask video M and the inpainted video V_{out}^d by 3DCN. During training, we view a video data sample as a batch of images so that the data format can be well supported by the existing deep learning frameworks like TensorFlow. For a video data sample, the optimization goal is to minimize the mean of the l_1 norm of the difference between I_{out}^k and x^k (k = 1, 2, ..., F). Specifically, the loss of CombCN is defined as:

$$L^{CombCN}(x, M, V_{out}^d) = \sum_{k=1,2,\dots,F} \frac{\|M^k \odot (G_i(x^k, M^k, I_{out}^{d,k}) - x^k)\|}{F \cdot \|M^k\|}$$
(2)

In practice, we first pre-train 3DCN to converge, and then train CombCN with the pre-trained 3DCN model finetuned. This training strategy can lead to fast convergence of CombCN compared with training both sub-networks together from scratch. We also enable fine-tuning 3DCN in order to acquire lower loss compared to the strategy without finetuning. In this case, we jointly optimize the weighted sum of the two sub-network losses, i.e.

$$L^{total} = L^{3DCN}(x, M, V_{out}^d) + \alpha L^{CombCN}(x^d, M^d)$$
(3)

where α is a balancing parameter which is set to 1.0 in our paper. A detailed comparison of different training strategies are presented in Section 4.3.2. The experiment result shows that our training strategy outperforms the other two, i.e. pre-training 3DCN disabled and finetuning 3DCN disabled when training CombCN.

4 Experimental Results

4.1 Dataset and implementation details

To validate our 3D-2D combined completion network, we tested in three datasets, Face-Forensics [22], 300VW [5] and Caltech [2].

The first two datasets contain 1,004 and 300 video clips with human faces respectively, where the faces are near-frontal pose and neutral expression change across frames. To further stress test our method, we also run on Caltech [II] which contains 10 hours of video

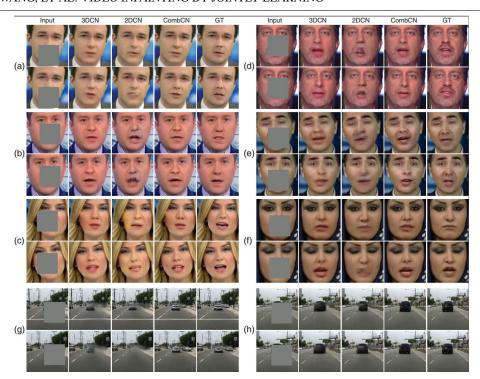


Figure 3: Inpainted frames on datasets FaceForensics ($a\sim f$) and Caltech (g, h). In each panel, the two rows represent two frames of a video, and the five columns from left to right are input, results by 3DCN, 2DCN and CombCN, as well as the target ground truth.

of size 640×480 taken from a vehicle driving through regular traffic in an urban environment. Compared to the face videos with obvious semantic structures, Caltech dataset is more challenging to an inpainting task.

In data preparation stage, we group every 32 frames from the original video clips into a data sample. Each frame is in 128^2 resolution, which is generated in the following manner. For the face videos, i.e. FaceForensics and 300VW, we first crop the face out with a squared bounding box; while for Caltech dataset, we directly crop the central 480^2 region out. The cropped region is then resized into 128^2 resolution. For each dataset, we separate the whole data samples into training and validation sets and control their proportion 5:1.

During training we randomly generate a hole across all frames in the [48,64] pixel range and fill it with the mean pixel value of the training dataset. The position of the hole for a video data sample is identical for all of its frames. Based on these inputs, we first pre-train 3DCN to convergence and then train CombCN with the pre-trained 3DCN model jointly finetuned. The CombCN is trained with 100k iterations by an Adam optimizer, whose regression weight and learning rate are set to 0.01 and 0.001, respectively. Each iteration costs approximate 0.8s and it takes nearly 30 hours to complete the entire training. The detailed configuration of 3DCN and CombCN is illustrated in Figs. 2. The implementation is based on TensorFlow and the network training is performed on a single NVIDIA GeForce GTX 1080 Ti. We will release our code to the public upon this manuscript accepted.

	3DCN	2DCN	CombCN (ours)		V1	V2	T1	T2	our method
FaceForensics	7.18	6.77	6.27	3DCN	9.51	11.56	6.30	9.28	4.45
Caltech	11.91	11.16	9.56	CombCN	6.39	8.13	5.18	6.31	4.20

Table 2: Final losses (error/pixel). Left: The losses of 3DCN, 2DCN and CombCN of datasets FaceForensics and Caltech. Right: The losses of 3DCN and CombCN in 300VW dataset, based on variants of 3DCN (V1, V2) and training strategy (T1, T2), in comparison with our method.

4.2 Comparisons with existing methods

Our results in comparison with those produced by 2DCN and 3DCN can be found in Fig. 3. More video results are also presented in our accompanying supplemental materials.

Results by 2D completion network (2DCN). We first compare our method with a state-of-the-art image inpainting method [13], which is applied to each video frame independently. Such an image inpainting method is expected to produce higher quality result, but when applying it to each video frame, we found that the quality of frames are unstable and annoying visual artifacts like flicker present. This is because it lacks the mechanism to preserve the spatial-temporal coherence of the video. For example, in the 3rd column of Fig. 3(a)(f), the algorithm produces high quality results on the first frame but fails in the second frame, making the mouths missing. This circumstance also occurs in the Caltech dataset as shown in Fig. 3(g), where the car disappears unreasonably in the second frame. In addition, if there is motion in video, 2DCN may also produce blurry or distorted results as illustrated in Fig. 3(b)(d)(e). In contract, our CombCN produces reasonable and stable results (the 4th column) across frames. This temporal coherence ensures the pleasant user experience when the video being played.

Results by 3D completion network (3DCN). We also compare our results with the low resolution output achieved by 3DCN. They are listed in the 2nd column in Fig. 3. Due to the usage of 3D CNN in addition to working on low resolution, the inpainted frames contain significant blurry artifacts so that details cannot be well reconstructed. For example in Fig. 3(b)(d)(e), the teeth are almost missing in the inpainted frames by 3DCN. However, unlike the results by 2DCN, they have smooth transition across frames. In comparison, our approach preserves temporal coherence and details simultaneously. The final losses (error/pixel) by 3DCN, 2DCN and CombCN are list in Table. 2 (left).

4.3 Ablation studies

To discover the vital elements in the success of our proposed model for video inpainting, we made two groups of variants of our method. They are based on modifications of the 3DCN structure and the training strategy separately. The final losses of all variants and our method are listed in Table. 2 (right). These ablation studies were conducted on 300VW dataset.

4.3.1 Performance of variants of 3DCN

To investigate the influence of 3DCN to the final results by CombCN, we first modified the structure of 3DCN to its two variants V1, V2 as below.

V1. Feed 3DCN with videos in lower resolution. In this experiment, we fed the 3DCN with a lower resolution version of the original video, i.e. setting down-sample rate r = 4 to produce a 32^3 video \tilde{V}_{in}^d . Accordingly, we changed the combination layers in CombCN to the

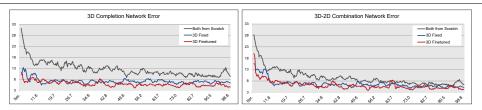


Figure 4: Error of variants of training strategy: the l_1 loss (per pixel error) of 3DCN (left) and CombCN (right). The horizontal axis represents the number of iterations in kilo unit.

first and last feature maps of size 32^2 instead of 64^2 . In this setting, the 3DCN produces more blurry frames while the temporal coherence is rarely lost. Our experiment shows that the convergence errors of 3DCN and CombCN are 9.51/pixel and 6.39/pixel, while our baseline model produces the corresponding errors 4.45/pixel and 4.20/pixel.

V2. Involve down-sampling in time axis in 3DCN. We alternatively modified our basic 3DCN to allow strided convolutions across time-axis. So the frame number of the feature maps in the 2nd and 4th convolutional layers are down-sampled, becoming $\frac{F}{2}$ and $\frac{F}{4}$ respectively. The deconvolutional layers are also modified to support up-sampling in time-axis. In this setting, the temporal coherence of the inpainted frames by 3DCN are less preserved while the extracted features become more compact. Our experiment shows that this setting does not obviously down-grade the performance of CombCN. The convergence errors just slightly increase to 11.56/pixel for 3DCN and 8.13/pixel for CombCN.

4.3.2 Performance of variants of training strategy

As afore-mentioned, our experimental results were produced by a CombCN trained with a fine-tuned pre-trained model of 3DCN. To investigate the performance of this training strategy, we further compared two other strategies T1 and T2 as follows.

T1. Pre-train 3DCN, then train CombCN without fine-tuning it. We first disable fine-tuning the pre-trained model of the 3DCN when training the CombCN. In this setting, the pre-trained 3DCN produces inpainted video frames in low resolution and they are directly fed forward to the CombCN. Due to lack of parameter updating, the loss of 3DCN keeps waving without decay, while the loss of the CombCN drops to convergence after nearly 20*k* iterations. After nearly 100*k* iterations, the loss approaches the value that is achieved by the strategy of fine-tuning enabled. We plot the two losses of 3DCN and CombCN in 100*k* iterations as navy lines in Fig. 4.

T2. Train 3DCN and CombCN jointly from scratch. We further remove the stage of pretraining 3DCN, and train 3DCN and CombCN jointly from scratch. Compared to our method and T1, due to lack of rich informative guidance produced by 3DCN, it takes considerable iterations (over 50k) for CombCN and 3DCN to converge. Furthermore, the convergence losses of the two sub-networks are also higher, i.e. 9.28/pixel for 3DCN and 6.31/pixel for CombCN. The result reveals the capability of our current training strategy in this paper.

4.4 Limitation and future work

Our approach can handle videos with unstructured information and motion in most cases. However, it may also fail if the test video has a severe variation with the training data. This phenomenon is more common than the image inpainting task because of the greater difficulty to obtain large scale of video training data in contract with image. Fig. 5 illustrates an example of our failure case, where the test video displays a man with large motion and was

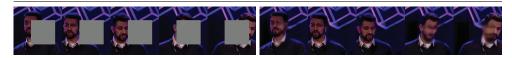


Figure 5: Failure case of our approach. Left: five frames with holes as input. Right: inpainted results by CombCN. The generated face in the 4th frame is distorted due to the video's significant variation with our training data, including large motion and different view setting.

captured in a different view setting (far from the face). As a result, our approach produces an unreasonable face in the 4th frame.

Moreover, unlike state-of-the-art image inpainting approaches commonly involving GAN to synthesize more vivid results, we only use l_1 loss in our paper, which may potentially limit the power of our combination idea. We will leave it a future work about how to integrate GANs to our 3DCN and CombCN.

5 Conclusion

We have presented an end-to-end framework for video inpainting through a joint 2D-3D CNNs which contains a temporal structure inference network and spatial detail recovering network. Our results show that our method significantly improves the performance of existing methods. As future works, we plan to 1) involve 3D and 2D adversarial losses to further improve the output quality of both temporal structure inference and spatial details recovering; 2) extend the strategy in [13] to deal with the holes with arbitrary shapes and dynamic positions across frames. We also believe this architecture has potentials to be applied to other video generation tasks.

Acknowledgement

The work was partially supported in part by Shenzhen Fundamental Research Fund under Grant No. KQTD2015033114415450.

References

- [1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch: A randomized correspondence algorithm for structural image editing. *ACM Transactions on Graphics-TOG*, 28(3):24, 2009.
- [2] Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam Finkelstein. The generalized patchmatch correspondence algorithm. In *European Conference on Computer Vision*, pages 29–43. Springer, 2010.
- [3] Connelly Barnes, Fang-Lue Zhang, Liming Lou, Xian Wu, and Shi-Min Hu. Patchtable: Efficient patch queries for large datasets and applications. *ACM Transactions on Graphics (TOG)*, 34(4):97, 2015.

- [4] Jaspreet Kaur Chhabra and Mr Vijay Birchha. Detailed survey on exemplar based image inpainting techniques. *International Journal of Computer Science and Information Technologies*, 5(5):6350–635, 2014.
- [5] Grigoris G Chrysos, Epameinondas Antonakos, Stefanos Zafeiriou, and Patrick Snape. Offline deformable face tracking in arbitrary videos. In *Proceedings of the IEEE International Conference on Computer Vision Workshops*, pages 1–9, 2015.
- [6] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using 3d-encoder-predictor cnns and shape synthesis. In *Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, volume 3, 2017.
- [7] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: An evaluation of the state of the art. *PAMI*, 34, 2012.
- [8] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and transfer. In *Proceedings of the 28th annual conference on Computer graphics and interactive techniques*, pages 341–346. ACM, 2001.
- [9] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling. In *Computer Vision*, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1033–1038. IEEE, 1999.
- [10] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu. High-resolution shape completion using deep neural networks for global structure and local geometry inference. In *IEEE International Conference on Computer Vision (ICCV)*, October 2017.
- [11] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? *arXiv preprint*, arXiv:1711.09577, 2017.
- [12] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. Temporally coherent completion of dynamic video. *ACM Transactions on Graphics (TOG)*, 35(6): 196, 2016.
- [13] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and Locally Consistent Image Completion. *ACM Transactions on Graphics (Proc. of SIGGRAPH 2017)*, 36(4):107, 2017.
- [14] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and locally consistent image completion. *ACM Transactions on Graphics (TOG)*, 36(4):107, 2017.
- [15] Shachar Ilan and Ariel Shamir. A survey on data-driven video completion. In *Computer Graphics Forum*, volume 34, pages 60–85. Wiley Online Library, 2015.
- [16] Yun-Tao Jia, Shi-Min Hu, and Ralph R Martin. Video completion using tracking and fragment merging. *The Visual Computer*, 21(8-10):601–610, 2005.
- [17] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture optimization for example-based synthesis. In *ACM Transactions on Graphics (ToG)*, volume 24, pages 795–802. ACM, 2005.

- [18] Alasdair Newson, Andrés Almansa, Matthieu Fradet, Yann Gousseau, and Patrick Pérez. Video inpainting of complex scenes. *SIAM Journal on Imaging Sciences*, 7 (4):1993–2019, 2014.
- [19] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders: Feature learning by inpainting. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2536–2544, 2016.
- [20] Kedar A Patwardhan, Guillermo Sapiro, and Marcelo Bertalmio. Video inpainting of occluding and occluded objects. In *Image Processing*, 2005. *ICIP* 2005. *IEEE International Conference on*, volume 2, pages II–69. IEEE, 2005.
- [21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pages 234–241. Springer, 2015.
- [22] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. Faceforensics: A large-scale video dataset for forgery detection in human faces. *arXiv*, 2018.
- [23] Abhishek Sharma, Oliver Grau, and Mario Fritz. Vconv-dae: Deep volumetric shape learning without object labels. In *European Conference on Computer Vision*, pages 236–250. Springer, 2016.
- [24] Timothy K Shih, Nick C Tang, and Jenq-Neng Hwang. Exemplar-based video inpainting without ghost shadow artifacts by maintaining temporal continuity. *IEEE transactions on circuits and systems for video technology*, 19(3):347–360, 2009.
- [25] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. Summarizing visual data using bidirectional similarity. In *Computer Vision and Pattern Recognition*, 2008. *CVPR 2008. IEEE Conference on*, pages 1–8. IEEE, 2008.
- [26] Jacob Varley, Chad DeChant, Adam Richardson, Joaquín Ruales, and Peter Allen. Shape completion enabled robotic grasping. In *Intelligent Robots and Systems (IROS)*, 2017 IEEE/RSJ International Conference on, pages 2442–2447. IEEE, 2017.
- [27] M Vijay Venkatesh, Sen-ching Samson Cheung, and Jian Zhao. Efficient object-based video inpainting. *Pattern Recognition Letters*, 30(2):168–179, 2009.
- [28] Chuan Wang, Jie Zhu, Yanwen Guo, and Wenping Wang. Video vectorization via tetrahedral remeshing. *IEEE Transactions on Image Processing*, 26(4):1833–1844, 2017.
- [29] Weiyue Wang, Qiangui Huang, Suya You, Chao Yang, and Ulrich Neumann. Shape inpainting using 3d generative adversarial network and recurrent convolutional networks. *arXiv* preprint arXiv:1711.06375, 2017.
- [30] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time video completion. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 1, pages I–I. IEEE, 2004.
- [31] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion of video. *IEEE Transactions on pattern analysis and machine intelligence*, 29(3), 2007.

- [32] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep neural networks. In *Advances in neural information processing systems*, pages 341–349, 2012.
- [33] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. High-resolution image inpainting using multi-scale neural patch synthesis. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, volume 1, page 3, 2017.