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Abstract

We present a new data-driven video inpainting method for recovering missing regions
of video frames. A novel deep learning architecture is proposed which contains two sub-
networks: a temporal structure inference network and a spatial detail recovering network.
The temporal structure inference network is built upon a 3D fully convolutional archi-
tecture: It only learns to complete a low-resolution video volume given the expensive
computational cost of 3D convolution. The low resolution result provides temporal guid-
ance to the spatial detail recovering network, which performs image-based inpainting
with a 2D fully convolutional network to produce recovered video frames in their orig-
inal resolution. Such two-step network design ensures both the spatial quality of each
frame and the temporal coherence across frames. Our method jointly trains both sub-
networks in an end-to-end manner. We provide qualitative and quantitative evaluation
on three datasets, demonstrating that our method outperforms previous learning-based
video inpainting methods.

1 Introduction
Given an image or a video with holes inside (e.g. generated by object removal), inpainting
(also called completion) techniques try to recover the missing video content to produce a
nature looking result. This problem has drawn great attention in the past two decades due
to strong industrial demands in image and video editing applications. Inpainting is a very
challenging task as the requirements are two-fold: (1) the generated content in the missing
regions must be semantically correct given their surrounding content; and (2) the missing
regions need to be filled in a seamless way that the original holes are visually unnoticeable.

In this work, we focus on video inpainting, an extended problem from image inpainting
with the added temporal dimension. Such extension brings new technical challenges that are
difficult to resolve. First, recovering missing video content requires the understanding of not
only the spatial context of each frame, but also the motion context across frames. Second,
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Figure 1: Video inpainting results by our approach. Top: input frames with missing regions
(shown in gray). Bottom: our results. Note that the filled regions contain rich image details
and are temporally coherent.

the output video must maintain high spatio-temporal consistency, in both global context-
level and local image-feature-level. Although there has been tremendous progress on image
inpainting, e.g. patch-based image synthesis [1, 2] and deep learning based approaches [14,
19], a direct extension of those methods in 3D would not work well for video inpainting.
Specifically, [12, 18, 24, 27, 31] have tried to extend spatial 2D patch synthesis to spatial-
temporal 3D patch synthesis. However, local synthesis, even in 3D space, cannot guarantee
global semantic correctness. Moreover, directly applying image inpainting networks on each
frame individually often leads to temporally jittering results that are visually unacceptable,
as we will demonstrate later.

We present a novel end-to-end deep learning architecture to tackle the above issues for
high quality video inpainting. As shown in Fig. 2, The network consists of a temporal struc-
ture prediction sub-network and a spatial detail recovering sub-network. The former sub-
network treats a video as a 3D volume. It takes a down-sampled version of the original video
as input, and fill the holes in it using 3D CNN with an Encoder-Decoder architecture. We
use this output volume as temporal structure guidance, since it captures the motion struc-
ture across time but lacks spatial details. The spatial detail inference network then takes the
original video and the temporal structure guidance as input, and generates completed video
frames in their original resolution. It has a 2D Encoder-Decoder architecture with global
and local l1 consistency losses. These two sub-networks are jointly trained and can benefit
from each other. In other words, the temporal structure guidance improves both the temporal
smoothness and the context consistency of the final video. Meanwhile, the loss of the spatial
detail recovering network is also back-propagated into the first network and helps improve
the accuracy of temporal structure prediction.

In summary, our main contributions are:

• the first work to use deep neural networks for solving the problem of video completion.
Compared with existing methods, the proposed algorithm can deal with the video with
complex appearances and large missing regions;

• we design a novel deep learning architecture that uses 3D CNN for temporal struc-
ture prediction and 2D CNN for spatial detail recovering, where the output temporal
structure is fused into the 2D CNN to guide the detail inference;

• we perform joint training of the two sub-networks, which further improves the perfor-
mance of the overall system.

Citation
Citation
{Barnes, Shechtman, Finkelstein, and Goldman} 2009

Citation
Citation
{Barnes, Shechtman, Goldman, and Finkelstein} 2010

Citation
Citation
{Iizuka, Simo-Serra, and Ishikawa} 2017{}

Citation
Citation
{Pathak, Krahenbuhl, Donahue, Darrell, and Efros} 2016

Citation
Citation
{Huang, Kang, Ahuja, and Kopf} 2016

Citation
Citation
{Newson, Almansa, Fradet, Gousseau, and P{é}rez} 2014

Citation
Citation
{Shih, Tang, and Hwang} 2009

Citation
Citation
{Venkatesh, Cheung, and Zhao} 2009

Citation
Citation
{Wexler, Shechtman, and Irani} 2007



WANG, ET AL: VIDEO INPAINTING BY JOINTLY LEARNING 3
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Figure 2: Network architecture of our 3D completion network (3DCN) and 3D-2D combined
completion network (CombCN). The 3DCN works in low resolution, producing an inpainted
video as output. Its individual frames are further convolved and added into the first and last
layer of the same size in CombCN.

2 Related Work

In this section, we introduce the related works in the following three aspects and refer the
readers to the works of [4] and [15] for detailed literature review of image/video inpainting.

Patch-based Image/Video Inpainting To fill in the holes using patch-based synthesis is
the most used traditional strategy for image inpainting. This was firstly proposed in [9]
and [8], where the missing contents are recovered in a region-growing way: the method
starts from boundary of holes and extends the region by searching appropriate patches and
assembling them together. Following up this work, there are many different directions for
improvement in searching and optimization [1, 2, 3, 17, 25, 31]. It is also adapted to video
inpainting problem by replacing 2D patch synthesis with 3D spatial-temporal patch synthesis
across frames. This was firstly proposed in [30, 31] to ensure the temporal consistency of
the generated video and later improved in [16, 20, 27] to handle more complicated video
input. However, all of these works are designed for the video owning of repeated content
across frames. They are unable to tackle the problem we proposed in this paper where no any
similar contents of the missing parts can be found in the input. Resorting to a large video
dataset, we try to train a CNNs in this work for missing contents prediction based on the
high-level context understanding.

Image Completion using 2D CNNs Recently, Convolutional Neural Networks was firstly
used in [32] for image inpainting but only for small holes. Pathak et al. [19] then proposed to
deal with large missing regions using an encoder-decoder architecture which can efficiently
learn the context feature of the image. For high-resolution image inpainting, Yang et al. [33]
developed a multi-scale neural patch synthesis algorithm that not only preserves contextual
structure but also produces high-frequency details. The algorithm proposed in [14] further
improves the performance by involving two adversarial losses to measure both the globally
and locally consistency of the result. Different from the previous works which only focus
on box-shaped holes, it also develops a strategy to handle the holes with arbitrary shapes.
To extend these methods from image to video domain is a challenging task because video
completion not only needs to have an accurate context understanding of both frames and
motions but also requires to ensure temporal smoothness of the output. In this paper, we
propose a novel deep learning architecture for this problem which takes use of both 2D and
3D CNNs to jointly learn the temporal structure and spatial details.
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Layer No. Type Kernel Stride Channel Dilation Layer No. Type Kernel Stride Channel Dilation
1 conv. 5 1 16 - 7 dilated conv. 3 1 256 8
2 conv. ↓ 3 2 32 - 8 conv. 3 1 128 -
3 conv. 3 1 64 - 9 deconv. ↑ 4 2 64 -
4 conv. ↓ 3 2 128 - 10 conv. 3 1 32 -
5 dilated conv. 3 1 256 2 11 deconv. ↑ 4 2 16 -
6 dilated conv. 3 1 256 4 12 conv. 3 1 3 -

Layer No. Type Kernel Stride Channel Dilation Layer No. Type Kernel Stride Channel Dilation
1 conv. 5 1 64 - 10 dilated conv. 3 1 256 16
2∗ conv. ↓ 3 2 128 - 11 conv. 3 1 256 -
3 conv. 3 1 128 - 12 conv. 3 1 256 -
4 conv. ↓ 3 2 256 - 13 deconv. ↑ 4 2 128 -
5 conv. 3 1 256 - 14 conv. 3 1 128 -
6 conv. 3 1 256 - 15∗ deconv. ↑ 4 2 64 -
7 dilated conv. 3 1 256 2 16 conv. 3 1 32 -
8 dilated conv. 3 1 256 4 17 conv. 3 1 3 -
9 dilated conv. 3 1 256 8

Table 1: Network architecture of 3DCN (top) and CombCN (bottom). In the bottom table, *
represents the layers where combination takes place in CombCN.

Shape Completion using 3D CNNs Another series of works related to our paper is using
3D CNNs for 3D shape completion. Similar to deep learning based image inpainting, most
of the methods such as [6, 23, 26] uses encoder-decoder architecture but with 3D CNNs for
solving this problem. However, all these techniques can only handle low-resolution grids
(typically 303 voxels) due to the high computational cost of 3D convolutions. To address
this issue, many approaches are proposed most recently. Resorting to a dataset, Dai et al. [6]
used patch retrieval and assembly as a post-processing to refine the low-resolution output of
encoder-decoder network. For such post-refinement, the method in [29] proposed a strategy
to slice the low-resolution output into a sequence of images and did super-resolution and
completion for each sliced image with a recurrent neural network. Han et al. [10] designed
a hybrid networks for jointly global structure prediction and local geometry inference. Our
work is inspired by this method but differs from it in two aspects. Firstly, the method of [10]
conducted the completion in a region-growing way while ours is an end-to-end architecture
for completion. Secondly, for details inference, the method in [10] only looks at a local
region which lacks much surrounding context information while ours algorithm uses the
content of the whole image for missing information recovering.

3 Algorithm
Our method is built upon deep neural networks. It takes an incomplete video Vin and a mask
video M as input, and produces an complete video Vout as output. The incomplete video is
represented as a F×H×W volume, where F , H, W are number of frames, height and width
of Vin. M and Vout are of the same size as Vin. In training stage, Vin is obtained by randomly
generating holes on a complete video x, i.e. the target ground truth of the inpainting task.

To produce a spatial-temporal coherent inpainted video, our network consists of two
sub-networks. One network is a 3D completion network (3DCN), which utilizes 3D CNN
to infer the temporal structure globally from a down-sampled version (F × H

r ×
W
r ) of Vin

and M. In this paper, we use superscript d to distinguish the downsampled videos from their
original versions. So 3DCN takes V d

in and Md as input and produces V d
out as output. Another

sub-network is a 3D-2D combined completion network (CombCN). It applies 2D CNN to
perform completion frame by frame. The input of this network includes two incomplete but
high-resolution frames of Vin and M and a low-resolution but completed frame Id,k

out of V d
out

(k = 1,2, ...,F). In our paper, F , H, W , r are set to 32, 128, 128 and 2 respectively.
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3.1 Temporal structure inference by 3DCN
A video inpainting task requires not only filling the missing part within each frame but
also keeping the consistency between successive frames. For this reason, it would fail if
directly apply the existing image inpainting methods such as [13] on video frames separately,
because they lack the mechanism of preserving temporal coherence. On the other hand,
video can also be viewed as a spatial-temporal volume and its temporal structure could be
preserved when algorithms are globally applied on it, such as [11, 28]. To this end, we
apply 3D CNN globally to video inpainting. However, due to the expensive memory cost
of 3D convolutions, we only utilize 3D CNN on a down-sampled version V d

in of the input
video. The 3D completion network can generate an inpainted video V d

out which captures the
temporal structure of the original video, even although its individual frame lacks details.

Our 3D completion network follows an encoder-decoder structure and consists of 12 lay-
ers totally. Given the incomplete video and its mask as input, it first exploits 4 strided con-
volutional layers to encode it to a latent space, capturing its temporal-spatial structure. Then
3 dilated convolutional layers with rate 2, 4, 8 are followed to capture the spatial-temporal
information in larger perception field. At last, video inpainting is finally achieved by 3 con-
volutional and 2 fractionally-strided convolutional layers in an alternative order, yielding the
result with missing part filled. Rather than using the max-pooling and upsampling layers to
compute the feature maps, we employ 3×3 convolution kernels with stride of 2, which en-
sures that every pixel contributes. Meanwhile, considering non-successive frames may have
rare relations with the current one, and to avoid information loss across frames, we limit
stride and dilation takes effects only within frame rather than across frames. As a result, the
feature map of each layer has a constant frame number F . Besides, all the convolutional
layers are followed by batch normalization (BN) and ReLU non-linearity activation except
the last one. Paddings are involved to make the input and output have exactly the same size.
The skip-connections as U-Net [21] are also employed to facilitate the feature mixture across
encoder and decoder. The detailed configuration of our 3D completion network is illustrated
in Fig. 2 (a) and listed in Table 3 (left) (BN and ReLU are not shown for brevity).

Training. Let Gv(xd ,Md) =V d
out denotes the 3DCN in a functional form. The binary masks

Md and M take the value 1 inside regions to be filled-in and 0 elsewhere. The pixels of V d
in

and Vin inside the mask region are pre-filled with the mean pixel value of the training dataset
before feeding it to the network. During training, we minimize the l1 norm the difference
between V d

out and xd . The difference is also weighted considering the completion region mask
is used. Specifically, the l1 loss of 3DCN is defined by:

L3DCN(xd ,Md) =
‖Md� (Gv(xd ,Md)− xd)‖

‖Md‖
(1)

where � is the pixelwise multiplication and ‖·‖ is the l1 norm.

3.2 Spatial details completion by CombCN
The output of 3DCN is a low resolution inpainted video. It conveys temporal structure but
lacks details within each frame. To restore the details, we extend a 2D completion network
(2DCN) inspired by a state-of-the-art image inpainting work [13], obtaining a combined
completion network (CombCN). This CombCN consists of 17 layers including 11 strided
convolutional layers, 2 fractional deconvolutional layers and 4 dilated convolutional layers.
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It also follows an encoder-decoder structure where the minimal feature map size is H
4 ×

W
4 .

The dilated convolutional layers are involved to obtain a larger perception field so that the
network can "see" areas far from the missing part. The configuration of CombCN is listed in
Table. 3 (right) and we encourage the readers to review [13] for a detailed explanation of its
original configuration. Note that we also made a modification by involving skip-connection
as U-Net.

To tackle the issue that 2DCN treats each frame independently without considering tem-
poral coherence, we also inject the information from the output of 3DCN to CombCN. This
is achieved by using two convolutional layers to extract two feature maps of the 3DCN out-
put separately. The two feature maps are then added to the first and last layer of the same
size in CombCN, serving as a temporal guidance. In this paper, since 3DCN works on videos
of size H

2 ×
W
2 , the combination takes place in the 2nd and the 15th layer. We compared the

effectiveness of this combination setting with the basic 2DCN on successive frames. The
experimental results illustrate temporal coherence can be well preserved when inpainting
frames separately, as shown in Fig. 3 and Fig. 1.

Training. Let Gi(xk,Mk, Id,k
out ) = Ik

out denotes the CombCN in a functional form, where xk,
Mk and Id,k

out are the k-th frame of the target ground truth video x, mask video M and the
inpainted video V d

out by 3DCN. During training, we view a video data sample as a batch of
images so that the data format can be well supported by the existing deep learning frame-
works like TensorFlow. For a video data sample, the optimization goal is to minimize the
mean of the l1 norm of the difference between Ik

out and xk (k = 1,2, ...,F). Specifically, the
loss of CombCN is defined as:

LCombCN(x,M,V d
out) = ∑

k=1,2,...,F

‖Mk� (Gi(xk,Mk, Id,k
out )− xk)‖

F · ‖Mk‖
(2)

In practice, we first pre-train 3DCN to converge, and then train CombCN with the pre-
trained 3DCN model finetuned. This training strategy can lead to fast convergence of Com-
bCN compared with training both sub-networks together from scratch. We also enable fine-
tuning 3DCN in order to acquire lower loss compared to the strategy without finetuning. In
this case, we jointly optimize the weighted sum of the two sub-network losses, i.e.

Ltotal = L3DCN(x,M,V d
out)+αLCombCN(xd ,Md) (3)

where α is a balancing parameter which is set to 1.0 in our paper. A detailed comparison
of different training strategies are presented in Section 4.3.2. The experiment result shows
that our training strategy outperforms the other two, i.e. pre-training 3DCN disabled and
finetuning 3DCN disabled when training CombCN.

4 Experimental Results

4.1 Dataset and implementation details
To validate our 3D-2D combined completion network, we tested in three datasets, Face-
Forensics [22], 300VW [5] and Caltech [7].

The first two datasets contain 1,004 and 300 video clips with human faces respectively,
where the faces are near-frontal pose and neutral expression change across frames. To fur-
ther stress test our method, we also run on Caltech [7] which contains 10 hours of video
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Figure 3: Inpainted frames on datasets FaceForensics (a∼f) and Caltech (g, h). In each
panel, the two rows represent two frames of a video, and the five columns from left to right
are input, results by 3DCN, 2DCN and CombCN, as well as the target ground truth.

of size 640× 480 taken from a vehicle driving through regular traffic in an urban environ-
ment. Compared to the face videos with obvious semantic structures, Caltech dataset is more
challenging to an inpainting task.

In data preparation stage, we group every 32 frames from the original video clips into a
data sample. Each frame is in 1282 resolution, which is generated in the following manner.
For the face videos, i.e. FaceForensics and 300VW, we first crop the face out with a squared
bounding box; while for Caltech dataset, we directly crop the central 4802 region out. The
cropped region is then resized into 1282 resolution. For each dataset, we separate the whole
data samples into training and validation sets and control their proportion 5 : 1.

During training we randomly generate a hole across all frames in the [48,64] pixel range
and fill it with the mean pixel value of the training dataset. The position of the hole for a video
data sample is identical for all of its frames. Based on these inputs, we first pre-train 3DCN
to convergence and then train CombCN with the pre-trained 3DCN model jointly finetuned.
The CombCN is trained with 100k iterations by an Adam optimizer, whose regression weight
and learning rate are set to 0.01 and 0.001, respectively. Each iteration costs approximate
0.8s and it takes nearly 30 hours to complete the entire training. The detailed configuration
of 3DCN and CombCN is illustrated in Figs. 2. The implementation is based on TensorFlow
and the network training is performed on a single NVIDIA GeForce GTX 1080 Ti. We will
release our code to the public upon this manuscript accepted.
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3DCN 2DCN CombCN (ours)
FaceForensics 7.18 6.77 6.27

Caltech 11.91 11.16 9.56

V1 V2 T1 T2 our method
3DCN 9.51 11.56 6.30 9.28 4.45

CombCN 6.39 8.13 5.18 6.31 4.20

Table 2: Final losses (error/pixel). Left: The losses of 3DCN, 2DCN and CombCN of
datasets FaceForensics and Caltech. Right: The losses of 3DCN and CombCN in 300VW
dataset, based on variants of 3DCN (V1, V2) and training strategy (T1, T2), in comparison
with our method.

4.2 Comparisons with existing methods
Our results in comparison with those produced by 2DCN and 3DCN can be found in Fig. 3.
More video results are also presented in our accompanying supplemental materials.

Results by 2D completion network (2DCN). We first compare our method with a state-
of-the-art image inpainting method [13], which is applied to each video frame independently.
Such an image inpainting method is expected to produce higher quality result, but when ap-
plying it to each video frame, we found that the quality of frames are unstable and annoying
visual artifacts like flicker present. This is because it lacks the mechanism to preserve the
spatial-temporal coherence of the video. For example, in the 3rd column of Fig. 3(a)(f),
the algorithm produces high quality results on the first frame but fails in the second frame,
making the mouths missing. This circumstance also occurs in the Caltech dataset as shown
in Fig. 3(g), where the car disappears unreasonably in the second frame. In addition, if
there is motion in video, 2DCN may also produce blurry or distorted results as illustrated
in Fig. 3(b)(d)(e). In contract, our CombCN produces reasonable and stable results (the 4th
column) across frames. This temporal coherence ensures the pleasant user experience when
the video being played.

Results by 3D completion network (3DCN). We also compare our results with the low
resolution output achieved by 3DCN. They are listed in the 2nd column in Fig. 3. Due
to the usage of 3D CNN in addition to working on low resolution, the inpainted frames
contain significant blurry artifacts so that details cannot be well reconstructed. For example
in Fig. 3(b)(d)(e), the teeth are almost missing in the inpainted frames by 3DCN. However,
unlike the results by 2DCN, they have smooth transition across frames. In comparison,
our approach preserves temporal coherence and details simultaneously. The final losses
(error/pixel) by 3DCN, 2DCN and CombCN are list in Table. 2 (left).

4.3 Ablation studies
To discover the vital elements in the success of our proposed model for video inpainting, we
made two groups of variants of our method. They are based on modifications of the 3DCN
structure and the training strategy separately. The final losses of all variants and our method
are listed in Table. 2 (right). These ablation studies were conducted on 300VW dataset.

4.3.1 Performance of variants of 3DCN

To investigate the influence of 3DCN to the final results by CombCN, we first modified the
structure of 3DCN to its two variants V1, V2 as below.
V1. Feed 3DCN with videos in lower resolution. In this experiment, we fed the 3DCN
with a lower resolution version of the original video, i.e. setting down-sample rate r = 4 to
produce a 323 video Ṽ d

in. Accordingly, we changed the combination layers in CombCN to the
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Figure 4: Error of variants of training strategy: the l1 loss (per pixel error) of 3DCN (left)
and CombCN (right). The horizontal axis represents the number of iterations in kilo unit.

first and last feature maps of size 322 instead of 642. In this setting, the 3DCN produces more
blurry frames while the temporal coherence is rarely lost. Our experiment shows that the
convergence errors of 3DCN and CombCN are 9.51/pixel and 6.39/pixel, while our baseline
model produces the corresponding errors 4.45/pixel and 4.20/pixel.
V2. Involve down-sampling in time axis in 3DCN. We alternatively modified our basic
3DCN to allow strided convolutions across time-axis. So the frame number of the feature
maps in the 2nd and 4th convolutional layers are down-sampled, becoming F

2 and F
4 respec-

tively. The deconvolutional layers are also modified to support up-sampling in time-axis.
In this setting, the temporal coherence of the inpainted frames by 3DCN are less preserved
while the extracted features become more compact. Our experiment shows that this setting
does not obviously down-grade the performance of CombCN. The convergence errors just
slightly increase to 11.56/pixel for 3DCN and 8.13/pixel for CombCN.

4.3.2 Performance of variants of training strategy

As afore-mentioned, our experimental results were produced by a CombCN trained with
a fine-tuned pre-trained model of 3DCN. To investigate the performance of this training
strategy, we further compared two other strategies T1 and T2 as follows.
T1. Pre-train 3DCN, then train CombCN without fine-tuning it. We first disable fine-
tuning the pre-trained model of the 3DCN when training the CombCN. In this setting, the
pre-trained 3DCN produces inpainted video frames in low resolution and they are directly
fed forward to the CombCN. Due to lack of parameter updating, the loss of 3DCN keeps
waving without decay, while the loss of the CombCN drops to convergence after nearly 20k
iterations. After nearly 100k iterations, the loss approaches the value that is achieved by
the strategy of fine-tuning enabled. We plot the two losses of 3DCN and CombCN in 100k
iterations as navy lines in Fig. 4.
T2. Train 3DCN and CombCN jointly from scratch. We further remove the stage of pre-
training 3DCN, and train 3DCN and CombCN jointly from scratch. Compared to our method
and T1, due to lack of rich informative guidance produced by 3DCN, it takes considerable
iterations (over 50k) for CombCN and 3DCN to converge. Furthermore, the convergence
losses of the two sub-networks are also higher, i.e. 9.28/pixel for 3DCN and 6.31/pixel for
CombCN. The result reveals the capability of our current training strategy in this paper.

4.4 Limitation and future work
Our approach can handle videos with unstructured information and motion in most cases.
However, it may also fail if the test video has a severe variation with the training data.
This phenomenon is more common than the image inpainting task because of the greater
difficulty to obtain large scale of video training data in contract with image. Fig. 5 illustrates
an example of our failure case, where the test video displays a man with large motion and was
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Figure 5: Failure case of our approach. Left: five frames with holes as input. Right: inpainted
results by CombCN. The generated face in the 4th frame is distorted due to the video’s
significant variation with our training data, including large motion and different view setting.

captured in a different view setting (far from the face). As a result, our approach produces
an unreasonable face in the 4th frame.

Moreover, unlike state-of-the-art image inpainting approaches commonly involving GAN
to synthesize more vivid results, we only use l1 loss in our paper, which may potentially limit
the power of our combination idea. We will leave it a future work about how to integrate
GANs to our 3DCN and CombCN.

5 Conclusion

We have presented an end-to-end framework for video inpainting through a joint 2D-3D
CNNs which contains a temporal structure inference network and spatial detail recovering
network. Our results show that our method significantly improves the performance of exist-
ing methods. As future works, we plan to 1) involve 3D and 2D adversarial losses to further
improve the output quality of both temporal structure inference and spatial details recover-
ing; 2) extend the strategy in [13] to deal with the holes with arbitrary shapes and dynamic
positions across frames. We also believe this architecture has potentials to be applied to other
video generation tasks.
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